BACKGROUND: Bones develop to structurally balance strength and mobility. Bone developmental dynamics are influenced by whether an animal is ambulatory at birth. Precocial species, which are ambulatory at birth, develop advanced skeletal maturity in utero and experience postnatal development under mechanical loading. Here, we characterized postnatal bone development in the lower forelimbs of precocial goats using microcomputed tomography and histology. Our analysis focused on the two phalanges 1 (P1) bones and the partially fused metacarpal bone of the goat autopod from birth through adulthood. RESULTS: P1 cortical bone densified rapidly after birth, but cortical thickness increased continually through adulthood. Upon normalization by body mass, the P1 normalized polar moment of inertia was constant over time, suggestive of changes correlating with ambulatory loading. P1 trabecular bone increased in trabecular number and thickness until sexual maturity (12 months), while metacarpal trabeculae grew primarily through trabecular thickening. Unlike prenatal synostosis (i.e., bone fusion) of the metacarpal diaphysis, synostosis of the epiphyses occurred postnatally, prior to growth plate closure, through a unique fibrocartilaginous endochondral ossification. CONCLUSIONS: These findings implicate ambulatory loading in postnatal bone development of precocial goats and identify a novel postnatal synostosis event in the caprine metacarpal epiphysis.