Metabolites, lipids, and glycans are fundamental but interconnected classes of biomolecules that form the basis of the metabolic network. These molecules are dynamically channeled through multiple pathways that govern cellular physiology and pathology. Here, we present a framework for the simultaneous spatial analysis of the metabolome, lipidome, and glycome from a single tissue section using mass spectrometry imaging. This workflow integrates a computational platform, the Spatial Augmented Multiomics Interface (Sami), which enables multiomics integration, high-dimensional clustering, spatial anatomical mapping of matched molecular features, and metabolic pathway enrichment. To demonstrate the utility of this approach, we applied Sami to evaluate metabolic diversity across distinct brain regions and to compare wild-type and Ps19 Alzheimer's disease (AD) mouse models. Our findings reveal region-specific metabolic demands in the normal brain and highlight metabolic dysregulation in the Ps19 model, providing insights into the biochemical alterations associated with neurodegeneration.