scPrediXcan integrates deep learning methods and single-cell data into a cell-type-specific transcriptome-wide association study framework.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Temidayo Adeluwa, Mengjie Chen, Saideep Gona, Hae Kyung Im, Hyunki Kim, Rohit Kulkarni, Boxiang Liu, Ravi Madduri, Festus Nyasimi, Joseph E Powell, Sofia Salazar-Magaña, Sarah Sumner, Yichao Zhou, Lisha Zhu

Ngôn ngữ: eng

Ký hiệu phân loại: 415.0184 Grammar of standard forms of languages Syntax of standard forms of languages

Thông tin xuất bản: United States : Cell genomics , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 746042

Transcriptome-wide association studies (TWASs) help identify disease-causing genes but often fail to pinpoint disease mechanisms at the cellular level because of the limited sample sizes and sparsity of cell-type-specific expression data. Here, we propose scPrediXcan, which integrates state-of-the-art deep learning approaches that predict epigenetic features from DNA sequences with the canonical TWAS framework. Our prediction approach, ctPred, predicts cell-type-specific expression with high accuracy and captures complex gene-regulatory grammar that linear models overlook. Applied to type 2 diabetes (T2D) and systemic lupus erythematosus (SLE), scPrediXcan outperformed the canonical TWAS framework by identifying more candidate causal genes, explaining more genome-wide association study (GWAS) loci and providing insights into the cellular specificity of TWAS hits. Overall, our results demonstrate that scPrediXcan represents a significant advance, promising to deepen our understanding of the cellular mechanisms underlying complex diseases.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH