Phytochemical analysis and biological effects of Zingiber cassumunar extract and three phenylbutenoids: targeting NF-κB, Akt/MAPK, and caspase-3 pathways.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Thidaporn Gundom, Pharkphoom Panichayupakaranant, Wanida Sukketsiri

Ngôn ngữ: eng

Ký hiệu phân loại: 333.822 Coal

Thông tin xuất bản: England : BMC complementary medicine and therapies , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 746220

BACKGROUND: Zingiber cassumunar Roxb., belonging to the Zingiberaceae family, is a medicinal herb commonly found in tropical regions, particularly in Southeast Asia. This research aims to investigate the preventive effects and anti-inflammatory properties of a phenylbutenoid extract (PE) obtained from the rhizomes of Z. cassumunar. METHOD: The PE extract was prepared using green microwave extraction and subsequently analyzed by high-performance liquid chromatography. To evaluate its anti-inflammatory activity, lipopolysaccharide (LPS)-stimulated RAW264.7 cell models were used to measure the release of nitric oxide (NO), tumor necrosis factor-α (TNF-α), and interleukin-1β (IL-1β) using the Griess assay and enzyme-linked immunosorbent assay, respectively. Additionally, the inhibitory effects of PE on apoptosis and reactive oxygen species (ROS) production were evaluated in hydrogen peroxide-induced C2C12 myoblast cells. The expression of inflammation- and apoptosis-related proteins was evaluated using western blotting. RESULTS: The results indicated that the PE was enriched with (E)-(3,4-dimethoxyphenyl)butadiene (DMPBD), (E)-1-(3,4-dimethoxyphenyl)but-3-en-1-ol (compound D), and (E)-1-(3,4-dimethoxyphenyl)but-3-en-1-yl acetate (compound D acetate). The PE contained a total phenylbutenoid content of 1.42% w/w. The PE exhibited potent anti-inflammatory properties, with half maximal inhibitory concentration (IC CONCLUSION: These findings suggest that PE and its phenylbutenoids exhibit anti-inflammatory effects through the inhibition of p38, ERK, and Akt signaling pathways, and anti-apoptotic effects via the inhibition of the caspase-3 pathway, highlighting their therapeutic potential for managing inflammatory and degenerative conditions. CLINICAL TRIAL NUMBER: Not applicable.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH