Machine learning for improved density functional theory thermodynamics.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Erna K Delczeg-Czirjak, Olle Eriksson, Sergei I Simak

Ngôn ngữ: eng

Ký hiệu phân loại: 006.31 Machine learning

Thông tin xuất bản: England : Scientific reports , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 746332

The predictive accuracy of density functional theory (DFT) for alloy formation enthalpies is often limited by intrinsic energy resolution errors, particularly in ternary phase stability calculations. In this work, we present a machine learning (ML) approach to systematically correct these errors, improving the reliability of first-principles predictions. A neural network model has been trained to predict the discrepancy between DFT-calculated and experimentally measured enthalpies for binary and ternary alloys and compounds. The model utilizes a structured feature set comprising elemental concentrations, atomic numbers, and interaction terms to capture key chemical and structural effects. By applying supervised learning and rigorous data curation we ensure a robust and physically meaningful correction. The model is implemented as a multi-layer perceptron (MLP) regressor with three hidden layers, optimized through leave-one-out cross-validation (LOOCV) and k-fold cross-validation to prevent overfitting. We illustrate the effectiveness of this method by applying it to the Al-Ni-Pd and Al-Ni-Ti systems, which are of interest for high-temperature applications in aerospace and protective coatings.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH