Elucidating the specific processes and drivers of community assembly in the host microbiome is essential to fully understand host biology. Toward this goal, an important first step is to describe co-occurrence patterns among different microbial taxa, which can be driven by numerous factors, such as host identity. While host identity can be an important influential factor on co-occurrence patterns, a limited number of studies have explored the relative importance of host identity after controlling for other environmental factors. Here, we examined microbial co-occurrence patterns in four phylogenetically distinct trematode species living within the same snail species, collected concomitantly from the same habitat. Our previous study determined that all these trematodes shared some bacterial taxa, and the relative abundance of microbial taxa differed among trematodes, possibly due to differences in their eco-physiological traits. Here, we specifically predict that pairwise microbial co-occurrence patterns also vary among trematode host species. Our results showed that co-occurrence patterns among eight microbial families varied greatly among the four trematode hosts, with some microbial families co-occurring in some trematode species, whereas no such patterns were observed in other trematodes. Our study suggests that the habitat identity (trematode species) and its associated biotic characteristics, such as physiological and ecological traits, can determine co-occurrence patterns among microbial taxa, with substantial effects on local community composition.