Extensible Immunofluorescence (ExIF) accessibly generates high-plexity datasets by integrating standard 4-plex imaging data.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Moumitha Dey, Ihuan Gunawan, Felix V Kohane, John G Lock, Erik Meijering, Daniel P Neumann, Kathy Nguyen, Fatemeh Vafaee, Ye Zheng

Ngôn ngữ: eng

Ký hiệu phân loại: 615.8043 Specific therapies and kinds of therapies

Thông tin xuất bản: England : Nature communications , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 746404

 Standard immunofluorescence imaging captures just ~4 molecular markers (4-plex) per cell, limiting dissection of complex biology. Inspired by multimodal omics-based data integration approaches, we propose an Extensible Immunofluorescence (ExIF) framework that transforms carefully designed but easily produced panels of 4-plex immunofluorescence into a unified dataset with theoretically unlimited marker plexity, using generative deep learning-based virtual labelling. ExIF enables integrated analyses of complex cell biology, exemplified here through interrogation of the epithelial-mesenchymal transition (EMT), driving significant improvements in downstream quantitative analyses usually reserved for omics data, including: classification of cell phenotypes
  manifold learning of cell phenotype heterogeneity
  and pseudotemporal inference of molecular marker dynamics. Introducing data integration concepts from omics to microscopy, ExIF empowers life scientists to use routine 4-plex fluorescence microscopy to quantitatively interrogate complex, multimolecular single-cell processes in a manner that approaches the performance of multiplexed labelling methods whose uptake remains limited.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH