BACKGROUND & PURPOSE: Arterial stiffness, or loss of elastic compliance in large arteries, is an independent precursor of cardiovascular disease (CVD) [1] and dementia [2] for which currently there are no targeted therapies. We previously discovered that decreases in NO-sensitive guanylyl cyclase (NO-GC), the NO receptor which synthesizes cGMP, and in its target vasodilator-stimulated phosphoprotein (pVASP EXPERIMENTAL APPROACH & KEY RESULTS: Cinaciguat administration (5 mg/kg) to high fat, high sucrose diet (HFHS)-fed mice, our established model of arterial stiffness [4], (1) decreased pulse wave velocity, the in vivo index of arterial stiffness, without affecting blood pressure
(2) increased aortic pVASP CONCLUSIONS & IMPLICATIONS: Collectively, our data strongly support the notion that pharmacological NO-GC activation would be beneficial in decreasing obesity-associated arterial stiffness by decreasing VSMC cytoskeletal actin hyper-polymerization. If translated to humans, NO-GC activators could become a viable approach to clinically treat arterial stiffness, which remains an unmet medical need.