Enhancing sparse data recommendations with self-inspected adaptive SMOTE and hybrid neural networks.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Narasimhula Balayesu, Koteswararao Ch, Hari Prasad Gandikota, M Ganesh Karthik, G Satyanarayana, D Siri, Ramesh Vatambeti

Ngôn ngữ: eng

Ký hiệu phân loại: 070.48346 Journalism

Thông tin xuất bản: England : Scientific reports , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 746579

Personalized recommendation systems are vital for enhancing user satisfaction and reducing information overload, especially in data-sparse environments like e-commerce platforms. This paper introduces a novel hybrid framework that combines Long Short-Term Memory (LSTM) with a modified Split-Convolution (SC) neural network (LSTM-SC) and an advanced sampling technique-Self-Inspected Adaptive SMOTE (SASMOTE). Unlike traditional SMOTE, SASMOTE adaptively selects "visible" nearest neighbors and incorporates a self-inspection strategy to filter out uncertain synthetic samples, ensuring high-quality data generation. Additionally, Quokka Swarm Optimization (QSO) and Hybrid Mutation-based White Shark Optimizer (HMWSO) are employed for optimizing sampling rates and hyperparameters, respectively. Experiments conducted on the goodbooks-10k and Amazon review datasets demonstrate significant improvements in RMSE, MAE, and R² metrics, proving the superiority of the proposed model over existing deep learning and collaborative filtering techniques. The framework is scalable, interpretable, and applicable across diverse domains, particularly in e-commerce and electronic publishing.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH