The Double-Layer Potential for Spectral Constants Revisited.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Jens de Vries, Felix L Schwenninger

Ngôn ngữ: eng

Ký hiệu phân loại: 229.6 *Song of the Three Children, Susanna, Bel and the Dragon, Prayer of

Thông tin xuất bản: Switzerland : Integral equations and operator theory , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 746859

We thoroughly analyse the double-layer potential's role in approaches to spectral sets in the spirit of Delyon-Delyon, Crouzeix and Crouzeix-Palencia. While the potential is well-studied, we aim to clarify on several of its aspects in light of these references. In particular, we illustrate how the associated integral operators can be used to characterize the convexity of the domain and the inclusion of the numerical range in its closure. We furthermore give a direct proof of a result by Putinar-Sandberg-a generalization of Berger-Stampfli's mapping theorem-circumventing dilation theory. Finally, we show for matrices that any smooth domain whose closure contains the numerical range admits a spectral constant only depending on the extremal function and vector. This constant is consistent with the so far best known absolute bound
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH