When microliter drops of salt solutions dry on nonporous surfaces, they form erratic yet characteristic deposit patterns influenced by complex crystallization dynamics and fluid motion. Using OpenAI's image-enabled language models, we analyzed deposits from 12 salts with 200 images per salt and per model. GPT-4o classified 57% of the salts accurately, significantly outperforming random chance and GPT-4o mini. This study underscores the promise of general-use AI tools for reliably identifying salts from their drying patterns.