YOLOv8n-BWG-enhanced drone smoke detection: Advancing environmental monitoring efficiency.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Guiling Wu, Yaojun Zhang

Ngôn ngữ: eng

Ký hiệu phân loại: 004.358 Systems analysis and design, computer architecture, performance evaluation of multiprocessor computers

Thông tin xuất bản: United States : PloS one , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 747617

The precise monitoring and localization of industrial exhaust smoke emissions play a crucial role in environmental management. Existing methods encounter challenges like intricate detection environments, small-scale targets, and extensive model parameters. This study presents an advanced drone smoke detection model, YOLOv8n-BWG, building on YOLOv8. It introduces a novel BC2f structure into the backbone network, leveraging an adaptive query mechanism to minimize computational and storage demands while boosting feature extraction efficiency. Additionally, the study employs a dynamic sample allocation strategy to refine the loss function, enhancing the model's sensitivity to small targets. It also integrates a lightweight convolution, GSConv, in place of traditional convolution techniques. GSConv employs a channel grouping approach, streamlining model parameters without sacrificing accuracy. Results on a specialized dataset reveal that YOLOv8n-BWG outperforms YOLOv8n by increasing the mean Average Precision (mAP) by 4.2%, boosting recognition speed by 21.3% per second, and decreasing both the number of floating-point operations (FLOPs) by 28.9% and model size by 26.3%. Significantly, deploying YOLOv8n-BWG on drones yielded promising outcomes in smoke detection, offering innovative approaches and insights for effective smoke monitoring practices.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH