ConspectusIn this Accounts article, we summarize our recent work on truncating conjugated two-dimensional framework materials down to a single pore, or a single macrocycle. Conjugated 2D architectures have emerged as one of the most synthetically adaptable motifs for coupling semiconductivity and porosity in metal-organic frameworks (MOFs) and covalent organic frameworks (COFs). However, despite their prevalence, 2D architectures have several limitations. In particular, the strong interlayer π-π stacking can limit both processability and the accessibility of internal active sites. We have found that simple macrocycles preserve key aspects of 2D framework structure and function, including porosity and out-of-plane electrical conductivity, while providing improved processability, surface tunability, and mass transport properties. In this article, we first describe our synthetic approach and general design considerations. Specifically, we show how ditopic analogues of the tritopic ligands commonly found in the synthesis of 2D MOFs and COFs can be used to achieve a diverse library of conjugated macrocycles that resemble fragments of semiconducting frameworks in both form and function. The length of the peripheral side chains, the size of the aromatic core, and the solubility of intermediates are all key variables in favoring selective macrocycle formation over undesired linear polymers and oligomers. Next, we highlight the unique advantages that macrocycles provide, including improved processability, atomically precise surface tunability, and greater active site accessibility. In particular, the identity of the peripheral side chains dramatically impacts both solubility and colloidal stability as well as crystal size and morphology. We further show how the solution processability and nanoscale dimensions of macrocycles can simplify electronic device fabrication and improve electrochemical performance. Finally, we end with a forward-looking discussion on how macrocycles offer a unique bridge between conjugated molecules and extended frameworks, enabling new application areas and fundamental science.