Aqueous zinc metal batteries are highly regarded for their exceptional safety, low cost, environmental compatibility, and potential as a sustainable alternative to lithium-ion batteries. However, Zn dendrite growth and hydrogen evolution on anode side result in limited lifespan and safety issues. Herein, an organic-inorganic-integrated solid electrolyte interphase was in-situ formed by adding 4-(Trifluoromethyl)-1H-imidazole as an electrolyte additive. The artificial SEI merited higher maximum elastic deformation energy due to relatively high resilience and toughness, which can prevent Zn dendrite penetration and anode self-cracking and pulverization. In addition, N-containing heterocyclic in SEI acts as a H+ catcher, thereby inhibiting anode corrosion and hydrogen evolution. As a result, the Zn||Zn symmetric cell has delivered stable cycling performance after 1500 h at 5 mA cm-2 with a terminated capacity of 5 mAh cm-2. And an outstanding coulombic efficiency of 99.46% at 2200th cycle was achieved for a Cu||Zn asymmetric cell. Furthermore, a Zn||PANI full battery presented a stable cycling performance with a high-capacity retention of 97.6% after 200 cycles.