Homochiral metal-organic frameworks (MOFs) are exceptional media for heterogeneous enantiodifferentiation processes. Modifying available achiral structure-bearing MOF scaffolds is a preferred method to extend this class of materials. Reported postsynthetic covalent chiralizations generally lead to uniform, site-specific modifications. The use of chemically versatile modifying agents, like aldehydes, may instead result in the statistical formation of chemically nonuniform anchored products. In addition, the use of such modifying agents gives rise to spatial nonuniformities in the radial direction, due to prohibited diffusion through the MOF bulk. The advantageous grain structure formation plus molecular nonuniformity greatly increase the complexity of such systems. The use of such modifying agents, therefore, necessitates a broader holistic characterization. The present work explores the adaptation of imine chemistry for postsynthetic chiralization. A chiral aldehyde and a chiral ketone are probed on two amine-functionalized MOF substrates-MIL-125 NH