In our previous study, early-blind individuals have better speech recognition than sighted individuals, even when the spectral cue was degraded using noise-vocoders. Therefore, this study investigated the impact of temporal envelope degradation and temporal fine structure (TFS) degradation on vocoded speech recognition and cortical auditory response in early blind individuals compared to sighted individuals. The study included 20 early-blind subjects (31.20 ± 42.5 years, M: F = 11:9), and 20 age- and -sex-matched sighted subjects. Monosyllabic words were processed using the Hilbert transform to separate the envelope and TFS, generating vocoders that included only one of these components. The amplitude modulation (AM) vocoder, which contained only the envelope component, had the low-pass filter's cutoff frequency for AM extraction set at 16, 50, and 500 Hz to control the amount of AM cue. The frequency modulation (FM) vocoders, which contained only the TFS component, were adjusted to include FM cues at 50%, 75%, and 100% by modulating the noise level. A two-way repeated measures ANOVA revealed that early-blind subjects outperforming sighted subjects across almost all AM or FM-vocoded conditions (