Exploring an efficient catalytic system for tandem upcycling of CO2 and polyethylene terephthalate (PET) is highly desirable for achieving efficient resource utilization of wastes. However, the high activation energy for C=O bonds (in both PET and CO2) and the difficulty in regulating the reaction pathways restricted PET recovery efficiency. Here, we demonstrated the rational design of a single-atom Cu catalyst for precisely catalyzing the hydrogenation of CO2 to methanol and tandem PET upcycling to ethylene glycol (EG) and p-xylene (PX). In the Cu/UiO-66-NH2-A catalyst, Cu atoms are selectively anchored to the Zr-oxo nodes of UiO-66-NH2 to form Cu-O-Zr sites. The Cu-O-Zr sites can effectively activate both CO2 and H2 by reducing the activation energy and accelerate the transformation of PET to dimethyl terephthalate (DMT), which is further hydro-deoxygenated to yield PX. As a result, 20.4% CO2 conversion was obtained within 36 h, with 89.5% and 92.1% yields of PX and EG, respectively. Rapid and precise hydrogen spillover from Cu atoms to adsorbed reactants/intermediates at the Cu-O-Zr sites also drives the reaction process.