This paper presents a comprehensive examination of finite element modeling (FEM) approaches for seismocardiography (SCG), a non-invasive method for assessing cardiac function through chest surface vibrations. The paper provides a comparative analysis of existing FEM approaches, exploring the strengths and challenges of various modeling choices in the literature. Additionally, we introduce a sample framework for developing FEM models of SCG, detailing key methodologies from governing equations and meshing techniques to boundary conditions and material property selection. This framework serves as a guide for researchers aiming to create accurate models of SCG signal propagation and offers insights into capturing complex cardiac mechanics and their transmission to the chest surface. By consolidating the current methodologies, this paper aims to establish a reference point for advancing FEM-based SCG modeling, ultimately improving our understanding of SCG waveforms and enhancing their reliability and applicability in cardiovascular health assessment.