Robust automatic train pass-by detection combining deep learning and sound level analysis.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Erwann Betton-Ployon, Abbes Kacem, Jérôme Mars, Nadine Martin

Ngôn ngữ: eng

Ký hiệu phân loại: 343.09482 Military, defense, public property, public finance, tax, commerce (trade), industrial law

Thông tin xuất bản: United States : JASA express letters , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 749886

The increasing needs for controlling high noise levels motivate development of automatic sound event detection and classification methods. Little work deals with automatic train pass-by detection despite a high degree of annoyance. To this matter, an innovative approach is proposed in this paper. A generic classifier identifies vehicle noise on the raw audio signal. Then, combined short sound level analysis and mel-spectrogram-based classification refine this outcome to discard anything but train pass-bys. On various long-term signals, a 90% temporal overlap with reference demarcation is observed. This high detection rate allows a proper railway noise contribution estimation in different soundscapes.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH