Automatic detection of Parkinsonian speech using wavelet scattering features.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Paavo Alku, Mittapalle Kiran Reddy

Ngôn ngữ: eng

Ký hiệu phân loại: 025.347 *Pictures and materials for projection

Thông tin xuất bản: United States : JASA express letters , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 749887

In this paper, we study the automatic detection of Parkinson's disease (PD) from speech using features computed by a two-layer wavelet scattering network, which generates locally stable and translation-invariant features at each layer. The scattering features are encoded using Fisher vectors to obtain a single fixed-size feature vector per utterance. Support vector machine and feed-forward neural network classifiers are trained using the utterance-level features to perform the detection task (healthy vs PD). The results obtained with the PC-GITA database revealed that the proposed approach shows better results in comparison to the state-of-the-art techniques. The best classification accuracy of 87% was achieved with the proposed approach using speech from a text reading task.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH