Long-term prediction of El Niño-Southern Oscillation using reservoir computing with data-driven realtime filter.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Takuya Jinno, Takahito Mitsui, Kengo Nakai, Yoshitaka Saiki, Tsuyoshi Yoneda

Ngôn ngữ: eng

Ký hiệu phân loại: 344.0791 Labor, social service, education, cultural law

Thông tin xuất bản: United States : Chaos (Woodbury, N.Y.) , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 749921

In recent years, the application of machine learning approaches to time-series forecasting of climate dynamical phenomena has become increasingly active. It is known that applying a bandpass filter to a time-series data is a key to obtaining a high-quality data-driven model. Here, to obtain longer-term predictability of machine learning models, we introduce a new type of bandpass filter. It can be applied to realtime operational prediction workflows since it relies solely on past time series. We combine the filter with reservoir computing, which is a machine-learning technique that employs a data-driven dynamical system. As an application, we predict the multi-year dynamics of the El Niño-Southern Oscillation with the prediction horizon of 24 months using only past time series.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH