6PPDQ, a rubber tire-derived environmental pollutant, exhibits significant hepatotoxicity. However, its hepatotoxic mechanisms remain insufficiently studied and systematically evaluated. This study integrated network toxicology, transcriptomics, and metabolomics to investigate its toxicity mechanisms. ADMETlab 3.0 was used to predict physicochemical properties and multiorgan toxicity. The targets related to 6PPDQ and liver injury were obtained from public databases, and a protein-protein interaction (PPI) network was constructed to identify key targets. Meanwhile, molecular docking was performed to assess 6PPDQ's binding affinity to core proteins. Transcriptomics and differential gene expression analysis were performed on the livers of Kunming mice exposed to 4 mg/kg 6PPDQ to explore transcriptomic alterations, while metabolomic profiling identified disrupted metabolic pathways. Network toxicology results reveal that 6PPDQ primarily induces hepatotoxicity through apoptosis, inflammation, and lipid metabolic disturbances. Key targets, including