Viruses are ubiquitous in nature, yet our understanding of them remains limited. High-throughput sequencing technology facilitates the unbiased revelation of genetic composition in samples
however, viral sequences typically make up a small proportion of the entire sequencing data, making it challenging to accurately identify the few or fragmented viral sequences present in a sample. The limited features and information provided by short sequences result in insufficient resolution of viral sequences by existing models. Therefore, we propose a new model, VirNucPro, for short viral sequence identification. Based on a six-frame translation strategy and large language models, we combine nucleotide and amino acid sequence information to enhance feature extraction for short sequences, achieving high accuracy in identifying short viral sequences. Ablation experiments compared the contributions of nucleotide and amino acid sequence features to the model, confirming that the introduced amino acid features significantly contribute to the classification results. Our model outperforms others, such as GCNFrame, DeepVirFinder, DETIRE, and Virtifier, which have demonstrated good performance in identifying short viral sequences of 300 and 500 bp. Our model demonstrates excellent performance on carefully created real-world datasets. Additionally, it can scan for prophage regions within long bacterial fragments, offering a wide range of applications. The codes are available at: https://github.com/Li-Jing-1997/VirNucPro.