To obtain a deeper insight into the nature of energy dissipation during fracture, the internal friction of 13 borosilicate, aluminosilicate, soda-lime, and lead-containing glasses, for which inert crack growth data are known, was measured using dynamic mechanical thermal analysis. For asymmetrically bent glass beams, the loss tangent, tan δ, was determined between 0.2 and 50 Hz at temperatures between 273 K and the glass transition temperature, Tg. It was found that the area under the tan δ vs T·Tg-1 curve correlates with the crack growth exponent, n, in the empirical v = v0·KIn relation between crack growth velocity, v, and stress intensity, KI, which indicates that n correlates with the degree of energy dissipation of sub-Tg relaxation phenomena.