The rise of large-scale artificial intelligence (AI) models, such as ChatGPT, DeepSeek, and autonomous vehicle systems, has significantly advanced the boundaries of AI, enabling highly complex tasks in natural language processing, image recognition, and real-time decision-making. However, these models demand immense computational power and are often centralized, relying on cloud-based architectures with inherent limitations in latency, privacy, and energy efficiency. To address these challenges and bring AI closer to real-world applications, such as wearable health monitoring, robotics, and immersive virtual environments, innovative hardware solutions are urgently needed. This work introduces a near-sensor edge computing (NSEC) system, built on a bilayer AlN/Si waveguide platform, to provide real-time, energy-efficient AI capabilities at the edge. Leveraging the electro-optic properties of AlN microring resonators for photonic feature extraction, coupled with Si-based thermo-optic Mach-Zehnder interferometers for neural network computations, the system represents a transformative approach to AI hardware design. Demonstrated through multimodal gesture and gait analysis, the NSEC system achieves high classification accuracies of 96.77% for gestures and 98.31% for gaits, ultra-low latency (<
10 ns), and minimal energy consumption (<
0.34 pJ). This groundbreaking system bridges the gap between AI models and real-world applications, enabling efficient, privacy-preserving AI solutions for healthcare, robotics, and next-generation human-machine interfaces, marking a pivotal advancement in edge computing and AI deployment.