Accurately estimating and assessing real-world quantities (e.g., how long it will take to get to the train station
the calorie content of a meal) is a central skill for adaptive cognition. To date, theoretical and empirical work on the mental resources recruited by real-world estimation has focused primarily on the role of domain knowledge (e.g., knowledge of the metric and distributional properties of objects in a domain). Here we examined the role of basic numeric abilities - specifically, symbolic-number mapping - in real-world estimation. In Experiment 1 (