scPrediXcan integrates advances in deep learning and single-cell data into a powerful cell-type-specific transcriptome-wide association study framework.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Temidayo Adeluwa, Mengjie Chen, Saideep Gona, Hae Kyung Im, Hyunki Kim, Rohit Kulkarni, Boxiang Liu, Ravi Madduri, Festus Nyasimi, Joseph Powell, Sofia Salazar-Magaña, Sarah Sumner, Yichao Zhou, Lisha Zhu

Ngôn ngữ: eng

Ký hiệu phân loại: 001.4226 Research; statistical methods

Thông tin xuất bản: United States : bioRxiv : the preprint server for biology , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 751191

Transcriptome-wide association studies (TWAS) help identify disease causing genes, but often fail to pinpoint disease mechanisms at the cellular level because of the limited sample sizes and sparsity of cell-type-specific expression data. Here we propose scPrediXcan which integrates state-of-the-art deep learning approaches that predict epigenetic features from DNA sequences with the canonical TWAS framework. Our prediction approach, ctPred, predicts cell-type-specific expression with high accuracy and captures complex gene regulatory grammar that linear models overlook. Applied to type 2 diabetes and systemic lupus erythematosus, scPrediXcan outperformed the canonical TWAS framework by identifying more candidate causal genes, explaining more genome-wide association studies (GWAS) loci, and providing insights into the cellular specificity of TWAS hits. Overall, our results demonstrate that scPrediXcan represents a significant advance, promising to deepen our understanding of the cellular mechanisms underlying complex diseases.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH