The Iron Metalloproteome of Pseudomonas aeruginosa Under Oxic and Anoxic Conditions.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Matthew R McIlvin, Mak Saito

Ngôn ngữ: eng

Ký hiệu phân loại: 579.332 *Pseudomonas

Thông tin xuất bản: United States : bioRxiv : the preprint server for biology , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 752735

Pseudomonas aeruginosa is a major contributor to human infections and is widely distributed in the environment. Its ability for growth under aerobic and anaerobic conditions provides adaptability to environmental changes and in confronting immune responses. We applied native 2-dimensional metalloproteomics to P. aeruginosa to examine how use of iron within the metallome responds to oxic and anoxic conditions. Analyses revealed four iron peaks comprised of metalloproteins with synergistic functions, including: 1) respiratory and metabolic enzymes, 2) oxidative stress response enzymes, 3) DNA synthesis and nitrogen assimilation enzymes, and 4) denitrification enzymes and related copper enzymes. Fe peaks were larger under anoxic conditions, consistent with increased iron demand due to anaerobic metabolism and with the denitrification peak absent under oxic conditions. Three ferritins co-eluted with the first and third iron peaks, localizing iron storage with these functions. Several enzymes were more abundant at low oxygen, including alkylhydroperoxide reductase C that deactivates organic radicals produced by denitrification, all three classes of ribonucleotide reductases (including monomers and oligomer forms), ferritin (increasing in ratio relative to bacterioferritin), and denitrification enzymes. Superoxide dismutase and homogentisate 1,2-dioxygenase were more abundant at high oxygen. Several Fe peaks contained iron metalloproteins that co-eluted earlier than their predicted size, implying additional protein-protein interactions and suggestive of cellular organization that contributes to iron prioritization in Pseudomonas with its large genome and flexible metabolism. This study characterized the iron metalloproteome of one of the more complex prokaryotic microorganisms, attributing enhanced iron use under anaerobic denitrifying metabolism to its specific metalloprotein constituents.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH