Simple limbal epithelial transplantation (SLET) has emerged as an effective treatment option for limbal stem cell deficiency (LSCD). However, the precise molecular mechanisms underlying its success remain incompletely understood. This review delves into the proposed mechanisms involving the donor limbus, host microenvironment, and the amniotic membrane as a scaffold in SLET. The donor limbus contributes to SLET efficacy through various factors secreted by limbal epithelial stem cells, including hepatocyte growth factor (HGF), soluble Fms-like tyrosine kinase-1 (sFLT-1), and pigment epithelium-derived factor (PEDF), which support corneal healing and transparency. Additionally, the presence of melanocytes, immune cells, limbal fibroblasts, and adhesion molecules within the donor tissue helps preserve the integrity of the limbal niche. The host environment plays a critical role in supporting the transplanted stem cells, with mesenchymal stem cell-secreted factors promoting proliferation and differentiation. Although the amniotic membrane has traditionally been used as a scaffold, emerging evidence suggests that it may not always be necessary. Further studies are needed to validate this scaffold-free approach and to evaluate the vitality and functional contributions of individual components used in SLET. Understanding these complex interactions and molecular mechanisms sheds light on the importance of the donor tissue, host microenvironment, and scaffold in SLET, paving the way for the optimization of this technique for the effective treatment of LSCD.