Mucociliary clearance, the ability of the respiratory tract to protect the integrity of the airways through the mechanical removal of potentially harmful substances, is of enormous importance during intensive care treatment. The present study aimed to evaluate the influence of clinically relevant inotropic agents on mucociliary clearance. The particle transport velocity (PTV) of isolated murine tracheae was measured as a surrogate for mucociliary clearance in the presence of dobutamine, epinephrine, and milrinone. Inhibitory substances were applied to elucidate the signal transduction cascades and the value and origin of calcium ions which provoke alterations in mucociliary clearance function. Dobutamine, epinephrine, and milrinone increased the PTV in a dose-dependent manner with half maximal effective concentrations of 75.7 nM, 87.0 nM, and 13.7 µM, respectively. After the depletion of intracellular calcium stores, no increase in PTV was observed after administering any of the three inotropic agents. While dobutamine and epinephrine activated β-adrenergic receptors, epinephrine used both the phospholipase C (PLC) and protein kinase A (PKA) pathway to promote the release of intracellular Ca