Many studies of walking function and aging have measured walking on flat surfaces with and without dual-tasking (i.e., performing a concurrent cognitive task). Walking in the community increases the complexity with surface undulations and varying surface types. We hypothesized that changes in walking resulting from increasing terrain unevenness would be better predicted by sensorimotor function than cognitive function. Sixty-three community-dwelling older adults (65-93 yrs old
32 males) performed overground walking under four uneven terrain conditions (Flat, Low, Medium, and High unevenness). Cognitive (cognitive flexibility, working memory, inhibition) and sensorimotor assessments (grip strength, 2-pt discrimination, pressure pain threshold) were measured as the primary predictors of walking performance. We found that walking speed decreased linearly with more elevated uneven terrain conditions across all participants
this was accentuated in older adults with lower mobility function. Greater rates of decline in walking speed from flat to uneven terrain were associated with worse attention and inhibitory function as well as lower 2-point tactile discrimination. Findings suggest that greater rates of decline with elevated terrain walking are associated with lower mobility function, lower executive functions and less somatosensation.