Detection of Analytes with the Outer Surface of Solid-State Nanochannels: From pm to μm.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Jing-Jing Hu, Niya Lin, Xiaoding Lou, Fan Xia, Lizhen Yuan

Ngôn ngữ: eng

Ký hiệu phân loại: 025.347 *Pictures and materials for projection

Thông tin xuất bản: United States : Accounts of chemical research , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 753798

Accurately simulating or sensitively monitoring specific substances, such as ions, molecules, and proteins in the life process, is essential for gaining a fundamental comprehension of the underlying biological mechanism, which has been a trending topic for many years. Solid-state nanochannels, inspired by biological ion channels, have been developed for decades and have achieved significant success, representing the forefront of the interdisciplinary fields of bioanalytical chemistry and nanotechnology. Typically, solid-state nanochannels with a pore size of less than 100 nm are selected to construct nanochannel-based biosensors, which can be an excellent platform to analyze small analytes, such as ions and small molecules, in a restricted space and simulate the intricate process of ion transport in living organisms. Furthermore, by integrating functional components that are termed probes into artificial devices, the nanochannel system has emerged as a remarkable tool for label-free and highly sensitive detection in practical applications. Nonetheless, the detection of large substances (more than nanoscale in size) has consistently posed a significant challenge, since previous research on solid-state nanochannels has mainly concentrated on the contribution of probes at the inner wall, which requires the biotargets to enter the nanochannel for successful detection. Moreover, the lack of testing techniques for the chemical and physical properties of probes anchored deep inside confined nanochannels results in an unclear working mechanism, which is another issue that cannot be ignored. The requirement for a more efficient and extensive detection platform has spurred an in-depth study of nanochannels, which provides innovative insight concentrating on the less restricted space on the outer surface (OS) of nanochannels and the probes at the OS (P
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH