Robust Cluster Prediction Across Data Types Validates Association of Sex and Therapy Response in GBM.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Boris Aguilar, Jill Barnholtz-Sloan, Gino Cioffi, David L Gibbs, Jingqin Luo, Jacob Mandel, Edward Pan, David Pot, Joshua B Rubin, Yoshie Umemura, Kristin A Waite

Ngôn ngữ: eng

Ký hiệu phân loại: 519.287 Expectation and prediction

Thông tin xuất bản: Switzerland : Cancers , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 75894

BACKGROUND: Previous studies have described sex-specific patient subtyping in glioblastoma. The cluster labels associated with these "legacy data" were used to train a predictive model capable of recapitulating this clustering in contemporary contexts. METHODS: We used robust ensemble machine learning to train a model using gene microarray data to perform multi-platform predictions including RNA-seq and potentially scRNA-seq. RESULTS: The engineered feature set was composed of many previously reported genes that are associated with patient prognosis. Interestingly, these well-known genes formed a predictive signature only for female patients, and the application of the predictive signature to male patients produced unexpected results. CONCLUSIONS: This work demonstrates how annotated "legacy data" can be used to build robust predictive models capable of multi-target predictions across multiple platforms.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH