The durability problem caused by the high-water absorption of foamed concrete restricts its further development and application. This study aimed to improve the durability of foamed concrete by transforming its performance from hydrophilic to superhydrophobic. Firstly, polydimethylsiloxane-modified superhydrophobic bulk foamed concrete was produced through physical foaming. Then, multiple durability tests, like mechanical wear, acid-alkali-saline resistance, ultraviolet aging, and extreme temperatures resistance tests, were carried out to assess its performance. Finally, the mechanism of superhydrophobicity also was studied. The results indicated that the volumetric and capillary water absorption of the superhydrophobic foamed concrete decreased by 72.4% and 92.6%, respectively, compared to ordinary foamed concrete. The dry densities of ordinary foamed concrete and superhydrophobic foamed concrete were 720 kg/m