Zinc oxide (ZnO) semiconductors are renowned for their cost-effective synthesis and superior catalytic attributes, making them prominent in environmental remediation applications. This study presents the synthesis of ZnO nanoparticles (NPs) with distinct morphologies, achieved by modulating citric acid concentrations in an ultrasonic-assisted hydrothermal process. The photocatalytic efficacy of these ZnO NPs in degrading malachite green (MG), a persistent environmental pollutant, was thoroughly investigated. Our findings reveal a strong correlation between the morphological features of ZnO catalysts and their photodegradation performance. Among the synthesized NPs, the chrysanthemum-shaped ZnO (denoted as USZ-0.1) demonstrated exceptional photocatalytic activity, attributed to its enhanced surface area and optimized nano-crystal aggregation. This structure facilitated the generation of a higher concentration of reactive oxygen species, leading to over 96.5% degradation of MG within 40 min under simulated sunlight in an acidic medium. This study underscores the potential of morphological manipulation in enhancing the photocatalytic properties of ZnO NPs for environmental applications.