Porous carbon holds great potential for application in supercapacitors due to its rich pore structure and high specific surface area. In this research, lignin served as the starting material for the production of lignin-derived carbon materials via a carbonization-activation process. The resulting porous carbon materials underwent rigorous characterization using SEM, BET, Raman, XRD, and XPS to uncover their morphological and structural intricacies. Notably, the optimal product, achieved with a mass ratio of lignin to KOH and KCl at 1:2:0.5 and activation temperature at 700 °C, emerges as an excellent electrode material for high-performance supercapacitors. This superior carbon material boasts a remarkable specific surface area of 2730 m