Kinetic and Structural Insights into β-Cyclodextrin Complexation with Asparagine Enantiomers: An Experimental and Theoretical Study.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Angelos G Kalampounias, Constantine Kouderis, Panagiota Siafarika, Stefanos Tsigoias

Ngôn ngữ: eng

Ký hiệu phân loại: 271.6 *Passionists and Redemptorists

Thông tin xuất bản: Switzerland : Molecules (Basel, Switzerland) , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 78492

We report on the dynamic interactions between β-cyclodextrin (β-CD) and each one of the two enantiomers of asparagine (d-Asp, l-Asp). Molecular docking methodologies were applied to elucidate the formation of the β-CD-d-Asp and β-CD-l-Asp inclusion complexes. Ultrasonic relaxation spectra revealed a single relaxation process in the frequency range studied that is attributed to the complexation between β-CD and asparagine enantiomers. Kinetic parameters and thermodynamic properties for each system were determined directly from the concentration- and temperature-dependent acoustic measurements, respectively. Both β-CD-d-Asp and β-CD-l-Asp systems revealed subtle differences in their thermodynamic and kinetic properties. The infrared absorption spectra of the host molecule, the guest enantiomers, and both inclusion complexes were recorded to verify and further elucidate the complexation mechanism. DFT methodologies were performed to calculate the theoretical IR spectra of the inclusion complexes and compared with the corresponding experimental spectra. The close resemblance between the experimental and theoretically predicted IR spectra is supportive of the formation of inclusion complexes. The encapsulation of asparagine enantiomers in β-cyclodextrin enables not only applications in drug delivery but also the detection and separation of chimeric molecules.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH