Rice Quality and Yield Prediction Based on Multi-Source Indicators at Different Periods.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Huiyu Bao, Jianxin Chen, Qingshan Chen, Hongxiu Gao, Bangdong Han, Yufei Hou, Tamanna Islam Rimi, Yizhuo Wang, Qiaorong Wei, Ziyang Yu, Siyuan Zhang, Zhongchen Zhang, Zhenqing Zhao

Ngôn ngữ: eng

Ký hiệu phân loại:

Thông tin xuất bản: Switzerland : Plants (Basel, Switzerland) , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 78711

This study aims to develop an effective and reliable method for estimating rice quality indices and yield, addressing the growing need for rapid, non-destructive, and accurate predictions in modern agriculture. Field experiments were conducted in 2018 at the Suiling Water Conservancy Comprehensive Experimental Station (47°27' N, 127°06' E), using Longqingdao 3 as the test variety. Measurements included the leaf area index (LAI), chlorophyll content (SPAD), leaf nitrogen content (LNC), and leaf spectral reflectance during the tillering, jointing, and maturity stages. Based on these parameters, spectral indicators were calculated, and univariate linear regression models were developed to predict key rice quality indices. The results demonstrated that the optimal
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH