As a prominent agricultural country, China has widely implemented returning straw to the field in agricultural production. However, as the decomposition of straw progresses, the physical properties of the soil change, inevitably leading to alterations in the soil surface evaporation model. This study investigated the variations in soil evaporation rate, soil moisture content over 60 days after returning straw to the field, and bare soil through two leaching pond experiments. Through soil moisture retention curves at different degrees of decomposition, this study analyzed the impact of straw decomposition on soil's water retention capacity. Based on measured data, this study formulated models for the soil surface evaporation resistance of bare soil and varying degrees of straw decomposition. With the comparison and contrast between the models, this study clarified the impact of straw decomposition on soil surface evaporation resistance. The main conclusions are the following: The moisture content of the surface soil decreases exponentially over time and, after 40 days of straw decomposition, the water content of the soil under decomposition is higher than that of bare soil. As the moisture content decreases, the cumulative evaporation from the soil increases linearly. The cumulative evaporation of the decomposed straw soil is lower than that of bare soil, with a relative reduction ranging from 3.08% to 32.2%. The straw decomposition significantly enhances the water retention capacity of the soil in the medium-to-high suction range. The straw decomposition enhances the evaporation resistance of the soil surface, and the greater the degree of decomposition, the more significant the enhancement effect. The research findings not only provide a scientific basis for agricultural water management, but also possess practical implications for guiding farmers to adopt more effective moisture retention measures.