Adaptable Alchemy: Exploring the Flexibility of Specialized Metabolites to Environmental Perturbations Through Post-Translational Modifications (PTMs).

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Riccardo Aversano, Domenico Carputo, Luca Cimmino, Vincenzo D'Amelia, Teresa Docimo, Annalisa Staiti

Ngôn ngữ: eng

Ký hiệu phân loại: 363.232 Patrol and surveillance

Thông tin xuất bản: Switzerland : Plants (Basel, Switzerland) , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 78776

Plants are subjected to various stresses during the growth process, including biotic stresses, as well as abiotic stresses such as temperature, drought, salt, and heavy metals. To cope with these biotic and abiotic adversities, plants have evolved complex regulatory mechanisms during their long-term environmental adaptations. In a suddenly changing environment, protein modifiers target other proteins to induce post-translational modification (PTM) in order to maintain cell homeostasis and protein biological activity in plants. PTMs modulate the activity of enzymes and transcription factors in their respective metabolic pathways, enabling plants to produce essential compounds for their survival under stress conditions. Examples of post-translational mechanisms include phosphorylation, ubiquitination, glycosylation, acetylation, protein-protein interactions, and targeted protein degradation. Furthermore, the role of histone modifications in regulating secondary metabolism deserves attention due to its potential impact on heritability and its contribution to stress tolerance. Understanding the epigenetic aspect of these modifications can provide valuable insights into the mechanisms underlying stress response. In this context, also examining PTMs that impact the biosynthesis of secondary metabolites is meaningful. Secondary metabolites encompass a wide range of compounds such as flavonoids, alkaloids, and terpenoids. These secondary metabolites play a crucial role in plant defense against herbivores, pathogens, and oxidative stress. In this context, it is imperative to understand the contribution of secondary metabolism to plant tolerance to abiotic stresses and how this understanding can be leveraged to improve long-term survival. While many studies have focused on the transcriptional regulation of these metabolites, there is a growing interest in understanding various changes in PTMs, such as acetylation, glycosylation, and phosphorylation, that are able to modulate plants' response to environmental conditions. In conclusion, a comprehensive exploration of post-translational mechanisms in secondary metabolism can enhance our understanding of plant responses to abiotic stress. This knowledge holds promise for future applications in genetic improvement and breeding strategies aimed at increasing plant resilience to environmental challenges.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH