Performance Comparison of Genomic Best Linear Unbiased Prediction and Four Machine Learning Models for Estimating Genomic Breeding Values in Working Dogs.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Katy M Evans, Heather J Huson, Kyle C Quigley, Krishnamoorthy Srikanth, Joseph A Thorsrud

Ngôn ngữ: eng

Ký hiệu phân loại: 305.568 +Alienated and excluded classes

Thông tin xuất bản: Switzerland : Animals : an open access journal from MDPI , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 78904

This study investigates the efficacy of various genomic prediction models-Genomic Best Linear Unbiased Prediction (GBLUP), Random Forest (RF), Support Vector Machine (SVM), Extreme Gradient Boosting (XGB), and Multilayer Perceptron (MLP)-in predicting genomic breeding values (gEBVs). The phenotypic data include three binary health traits (anodontia, distichiasis, oral papillomatosis) and one behavioral trait (distraction) in a population of guide dogs. These traits impact the potential for success in guide dogs and are therefore routinely characterized but were chosen based on differences in heritability and case counts specifically to assess gEBV model performance. Utilizing a dataset from The Seeing Eye organization, which includes German Shepherds (
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH