The key equipment for performing aerodynamic testing of objects, such as road and railway vehicles, aircraft, and wind turbines, as well as stationary objects such as bridges and buildings, are multichannel pressure measurement instruments (pressure scanners). These instruments are typically based on arrays of separate pressure sensors built in an enclosure that also contains temperature sensors used for temperature compensation. However, there are significant limitations to such a construction, especially when increasing requirements in terms of miniaturization, the number of pressure channels, and high measurement performance must be met at the same time. In this paper, we present the development and realization of an innovative MEMS multisensor chip, which is designed with the intention of overcoming these limitations. The chip has four MEMS piezoresistive pressure-sensing elements and two resistive temperature-sensing elements, which are all monolithically integrated, enabling better sensor matching and thermal coupling while providing a high number of pressure channels per unit area. The main steps of chip development are preliminary chip design, numerical simulations of the chip's mechanical behavior when exposed to the measured pressure, final chip design, fabrication processes (photolithography, thermal oxidation, diffusion, layer deposition, micromachining, anodic bonding, and wafer dicing), and electrical testing.