Addressing Missing Data Challenges in Geriatric Health Monitoring: A Study of Statistical and Machine Learning Imputation Methods.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Bogdan-Iulian Ciubotaru, Nicolae Goga, Gabriel-Vasilică Sasu, Andrei Vasilățeanu

Ngôn ngữ: eng

Ký hiệu phân loại: 613.13 Seasonal changes

Thông tin xuất bản: Switzerland : Sensors (Basel, Switzerland) , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 78977

In geriatric healthcare, missing data pose significant challenges, especially in systems used for frailty monitoring in elderly individuals. This study explores advanced imputation techniques used to enhance data quality and maintain model performance in a system designed to detect frailty insights. We introduce missing data mechanisms-Missing Completely at Random (MCAR), Missing at Random (MAR), and Missing Not at Random (MNAR)-into a dataset collected from smart bracelets, simulating real-world conditions. Imputation methods, including Expectation-Maximization (EM), matrix completion, Bayesian networks, K-Nearest Neighbors (KNN), Support Vector Machines (SVMs), Generative Adversarial Imputation Networks (GAINs), Variational Autoencoder (VAE), and GRU-D, were evaluated based on normalized Mean Squared Error (MSE), Mean Absolute Error (MAE), and R
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH