Motion and Inertia Estimation for Non-Cooperative Space Objects During Long-Term Occlusion Based on UKF-GP.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Xiaoli Bai, Rabiul Hasan Kabir

Ngôn ngữ: eng

Ký hiệu phân loại: 133.594 Types or schools of astrology originating in or associated with a

Thông tin xuất bản: Switzerland : Sensors (Basel, Switzerland) , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 79060

This study addresses the motion and inertia parameter estimation problem of a torque-free, tumbling, non-cooperative space object (target) under long-term occlusions. To solve this problem, we employ a data-driven Gaussian process (GP) to simulate sensor measurements. In particular, we implement the multi-output GP to predict the projection measurements of a stereo-camera system onboard a chaser spacecraft. A product kernel, consisting of two periodic kernels, is used in the GP models to capture the periodic trends from non-periodic projection data. The initial guesses for the periodicity hyper-parameters of the GP models are intelligently derived from fast Fourier transform (FFT) analysis of the projection data. Additionally, we propose an unscented Kalman filter-Gaussian process (UKF-GP) fusion algorithm for target motion and inertia parameter estimation. The predicted projections from the GP models and their derivatives are used as the pseudo-measurements for UKF-GP during long-term occlusion. Results from Monte Carlo (MC) simulations demonstrate that, for varying tumbling frequencies, the UKF-GP can accurately estimate the target's motion variables over hundreds of seconds, a capability the conventional UKF algorithm lacks.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH