Deep Learning Tool Wear State Identification Method Based on Cutting Force Signal.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Yingning Gao, Meiqiu Li, Shuhang Li

Ngôn ngữ: eng

Ký hiệu phân loại: 794.147 King

Thông tin xuất bản: Switzerland : Sensors (Basel, Switzerland) , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 79074

The objective of this study is to accurately, expeditiously, and efficiently identify the wear state of milling cutters. To this end, a state identification method is proposed that combines continuous wavelet transform and an improved MobileViT lightweight network. The methodology involves the transformation of the cutting force signal during the milling cutter cutting process into a time-frequency image by continuous wavelet transform. This is followed by the introduction of a Contextual Transformer module after layer 1 and the embedding of a Global Attention Mechanism module after layer 2 of the MobileViT network structure. These modifications are intended to enhance visual representation capability, reduce information loss, and improve the interaction between global features. The result is an improvement in the overall performance of the model. The improved MobileViT network model was shown to enhance accuracy, precision, recall, and F1 score by 1.58%, 1.23%, 1.92%, and 1.57%, respectively, in comparison with the original MobileViT. The experimental results demonstrate that the proposed model in this study exhibits a substantial advantage in terms of memory occupation and prediction accuracy in comparison to models such as VGG16, ResNet18, and Pool Former. This study proposes an efficient identification method for milling cutter wear state identification, which can identify the tool wear state in near real-time. The proposed method has potential applications in the field of industrial production.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH