(1) Background: Mechanical thrombectomy (MT) successfully treats ischemic strokes by extracting the thrombus, or clot, using a stent retriever to pull it through the blood vessel. However, clot slippage and/or fragmentation can occur. Real-time feedback to a clinician about attachment between the stent and clot could enable more complete removal. We propose a system whereby antibody-targeted magnetic nanoparticles (NPs) are injected via a microcatheter to coat the clot, oscillating magnetic fields excite the particles, and a small coil attached to the catheter picks up a signal that determines the proximity of the clot to the stent. (2) Methods: We used existing simulation code to model the signal from NPs distributed on a hemispherical clot with three orthogonally applied magnetic fields. An in vitro apparatus was built that applied fields and read out signals from a 1.5 mm pickup coil at a variable distance and orientation angle from a sample of 100 nm iron oxide core/shell NPs. (3) Results: Our simulations suggest that the sum of the voltages induced in the pickup coil from three orthogonal applied fields could localize a clot to within 180 µm, regardless of the exact orientation of the pickup coil, with further precision added via rotation-correction formulae. Our experimental system validated simulations
we estimated an in vitro distance recovery precision of 41 µm with a pickup coil 1 mm from the clot. (4) Conclusions: Magnetic NP sensing could be a safe and real-time method to estimate whether a clot is attached to the stent retriever during MT.