The development of a correlation-assisted direct time-of-flight (CA-dToF) pixel provides a novel solution for time-of-flight applications that combines low power consumption, robust ambient shot noise suppression, and a compact design. However, the pixel's implementation introduces systematic errors, affecting its performance. We investigate the pixel's robustness against various noise sources, including timing jitter, kTC noise, switching noise, and photon shot noise. Additionally, we address limitations such as the SPAD deadtime, and source follower gain mismatch and offset, identifying their impact on performance. The paper also proposes solutions to enhance the pixel's overall reliability and to improve the pixel's implementation.