The widespread deployment of CCTV systems has significantly enhanced surveillance and public safety across various environments. However, the emergence of deepfake technology poses serious challenges by enabling malicious manipulation of video footage, compromising the reliability of CCTV systems for evidence collection and privacy protection. Existing deepfake detection solutions often suffer from high computational overhead and are unsuitable for real-time deployment on resource-constrained CCTV cameras. This paper proposes FL-TENB4, a Federated-Learning-enhanced Tiny EfficientNetB4-Lite framework for deepfake detection in CCTV environments. The proposed architecture integrates Tiny Machine Learning (TinyML) techniques with EfficientNetB4-Lite, a lightweight convolutional neural network optimized for edge devices, and employs a Federated Learning (FL) approach for collaborative model updates. The TinyML-based local model ensures real-time deepfake detection with minimal latency, while FL enables privacy-preserving training by aggregating model updates without transferring sensitive video data to centralized servers. The effectiveness of the proposed system is validated using the FaceForensics++ dataset under resource-constrained conditions. Experimental results demonstrate that FL-TENB4 achieves high detection accuracy, reduced model size, and low inference latency, making it highly suitable for real-world CCTV environments.