Frequency Shaping-Based Control Framework for Reducing Motion Sickness in Autonomous Vehicles.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Chunhwan Lee, Soomin Lee, Chulwoo Moon

Ngôn ngữ: eng

Ký hiệu phân loại:

Thông tin xuất bản: Switzerland : Sensors (Basel, Switzerland) , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 79792

This study introduces a motion-sickness-reducing control strategy aimed at enhancing ride comfort in Electric Autonomous Vehicles (EAVs). For lateral control, the forward look-ahead distance was adaptively adjusted based on the Motion Sickness Dose Value (MSDV) analysis from ISO 2631-1, effectively mitigating lateral acceleration and its motion-sickness-related frequency components, leading to a reduced MSDV. For longitudinal control, Linear Quadratic Regulator (LQR) optimal control was applied to minimize acceleration, complemented by a band-stop filter specifically designed to attenuate motion-sickness-inducing frequencies in the acceleration input. The bandwidth of the band-stop filter used in this study was designed based on the motion-sickness frequency weighting specified in ISO 2631-1. The simulation results of the proposed control indicate a significant reduction in MSDV, decreasing from 16.3 to 10.46, achieving up to a 35.8% improvement compared to comparative control methods. While the average lateral position error was slightly higher than that of the comparative controller, the vehicle consistently maintained lane adherence throughout path-following tasks. These findings underscore the potential of the proposed method to simultaneously mitigate motion sickness and achieve a robust path-following performance in autonomous vehicles.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH