Physical activity (PA) is essential for healthy aging, but its accurate assessment in older adults remains challenging due to the limitations and biases of traditional clinical assessment. Mobile technologies and wearable sensors offer a more ecological, less biased alternative for evaluating PA in this population. This study aimed to optimize digital phenotyping strategies for assessing PA patterns in older adults, by integrating ecological momentary assessment (EMA) and continuous wearable sensor data collection. Over two weeks, 108 community-dwelling older adults provided real-time EMA responses while their PA was continuously monitored using Garmin Vivo 5 sensors. The combined approach proved feasible, with 67.2% adherence to EMA prompts, consistent across time points (morning: 68.1%
evening: 65.4%). PA predominantly occurred at low (51.4%) and moderate (46.2%) intensities, with midday activity peaks. Motivation and self-efficacy were significantly associated with low-intensity PA (R = 0.20 and 0.14 respectively), particularly in the morning. However, discrepancies between objective step counts and self-reported PA measures, which showed no correlation (R = -0.026,